

Asset and Personnel Trace: FRCHX Program Closeout

1. Analysis of Programmatic & Financial Records

This analysis assesses the official administrative and financial disposition of the Field-Reversed Configuration Heating Experiment (FRCHX). The investigation focuses on identifying formal closeout documentation and any evidence of a direct, government-funded successor program. The absence of such evidence is a key analytical finding, suggesting a deliberate and sensitive disposition rather than a simple termination.

1.1. Contractual Closeout Search

A comprehensive search of public federal award databases, including USAspending.gov, and the Department of Energy's (DOE) Office of Scientific and Technical Information (OSTI) repository was conducted for the period 2013-2015. The search targeted final technical summaries, contract closeout reports, or other dispositive documentation associated with the primary funding vehicle for the Air Force Research Laboratory's (AFRL) collaboration with Los Alamos National Laboratory (LANL), Interagency Agreement DE-A102-04ER54764.

This search yields a **negative finding**. No public-facing final technical report or formal closeout document for the FRCHX program is available in these official repositories. This absence is analytically significant. Standard federal procedure, particularly for DOE financial assistance awards, mandates that recipients submit a final technical report to OSTI upon project completion. This requirement ensures the public dissemination of federally funded research, detailing the project's objectives, activities, results, and conclusions.

The FRCHX program was a multi-year, multi-institutional collaboration between a premier national laboratory and a major DoD research center, representing a significant investment of federal resources and expertise. In its final publicly documented phase, the program achieved a notable technical breakthrough, successfully extending the FRC plasma lifetime to near the required duration for a full compression experiment. The lack of the expected final report for a program of this scale and success is not an intelligence gap but a positive indicator. It strongly suggests that the program's final results and conclusions were deemed too sensitive for public release, likely due to their direct relevance and successful transition to a follow-on classified application. The program was not terminated due to lack of progress; its success appears to have necessitated its removal from public view.

1.2. Successor Program Search

1.2.1. Los Alamos National Laboratory (LANL)

An analysis of LANL's Laboratory Directed Research and Development (LDRD) annual reports for Fiscal Years 2014 and 2015 was conducted to identify new projects within the P-24 Plasma Physics group or related divisions that could represent a successor to FRCHX. While the FY2014 report was not available for detailed project review, the FY2015 report reveals a

portfolio of new plasma physics projects. However, these initiatives are predominantly fundamental, postdoctoral-led research efforts (e.g., "3D Turbulent Magnetic Reconnection Experiments," "Magnetic Rayleigh-Taylor Instability") rather than a large-scale, integrated experimental program that would constitute a direct successor.

Concurrent analysis of the LANL P-24 group's activities post-2014 reveals a significant strategic shift. The group, led by key FRCHX scientist Dr. Glen Wurden, has transitioned to a role as a "capability-as-a-service" provider for the private sector. Through the DOE's Innovation Network for Fusion Energy (INFUSE) program, the P-24 group now leverages its unique, world-class diagnostic and simulation capabilities to support emerging private fusion companies. This represents a deliberate institutional pivot away from leading integrated, system-level experiments like FRX-L and FRCHX. This strategic change creates a capability and mission vacuum within the national laboratory system. By stepping back from the role of primary developer for an integrated Magnetized Target Fusion (MTF) concept, LANL effectively cleared the path for a non-governmental entity to assume that mission, armed with the foundational knowledge and experimental data that the laboratory had spent over a decade developing.

1.2.2. Air Force Research Laboratory (AFRL) Kirtland

A review of public-facing documentation from AFRL's Directed Energy Directorate for the 2014-2016 period, including strategic plans and fact sheets, was performed to identify any new programs under headings such as "Compact Pulsed Power" or "High Energy Density Physics Applications". The Directorate's official core competencies include "Pulsed Power" and "Plasma," making it the logical home for a FRCHX follow-on.

However, the directorate's publicly stated "game-changing" technology priorities during this timeframe were focused on more mature directed energy applications with nearer-term operational payoffs, such as autonomous systems, hypersonics, high-power lasers, and microwaves for counter-UAS and counter-electronics missions. There is no public record of a new, vaguely titled program that aligns with the objectives of a FRCHX successor. This programmatic silence, when viewed in context, points toward a strategic mission hand-off. The government-funded research phase (classified as 6.1/6.2 R&D) in FRCHX had successfully de-risked the core plasma physics of FRC-based MTF, demonstrating near-target performance by 2013. This timeline correlates directly with the October 2014 public announcement by Lockheed Martin's Skunk Works®—a prime defense contractor with a long history of transitioning advanced R&D into classified operational systems—of its own Compact Fusion Reactor (CFR) program based on similar physical principles. The subsequent rebalancing of AFRL's public S&T portfolio toward other priorities is consistent with the successful conclusion of the government research phase and the transition of the technology to a clandestine industrial partner for applied development. The lack of a successor program at AFRL is not an indicator of failure but rather a signature of a successful technology transition.

2. Analysis of Personnel Reassignment and Hardware Disposition

This section traces the two most critical components of the program—its key human capital and its unique physical assets—to determine whether they were maintained as a coherent effort or were dispersed following the conclusion of publicly documented activities.

2.1. Personnel Trace

The professional trajectories of the key scientific leads from both LANL and AFRL were mapped for the period immediately following 2013-2014.

- **Dr. Glen A. Wurden (LANL):** Post-2014, Dr. Wurden's publication record shows a clear shift away from direct, hands-on FRC compression experiments. He is the lead author of a 2016 *Journal of Fusion Energy* "community white paper" on Magneto-Inertial Fusion, a comprehensive review article co-authored by a wide array of figures from the MIF community, including his FRCHX collaborator Dr. John Degnan. His subsequent research has focused on other unclassified fusion concepts, including work on the Wendelstein 7-X stellarator and conceptual papers on "fusion rocket engines for planetary defense". This indicates a transition from leading a specific, high-TRL experiment to a broader, more academic and conceptual role within LANL's unclassified fusion program. He was not reassigned to a classified successor.
- **Dr. John H. Degnan (AFRL):** Dr. Degnan's online professional profile lists his status as a "Semi-Retired Technical Consultant". His name appears on several FRCHX-related conference papers and articles published as late as 2016, including the aforementioned MIF review paper. This activity is characteristic of a principal investigator overseeing the final data analysis and publication phase of a concluded project before transitioning to retirement or a consultative role.
- **Dr. Edward L. Ruden (AFRL):** Dr. Ruden's publication record also shows continued authorship on FRCHX-related conference proceedings into 2016, summarizing the experiment's results. He was likely involved in the program's data analysis and wrap-up phase before being reassigned to other projects within the AFRL Directed Energy Directorate's broad portfolio of high-energy-density physics and pulsed power activities.

Personnel Name	Primary Affiliation (Pre-2014)	Key Post-2014 Activities/Projects	Assessment of Trajectory
Glen A. Wurden	Los Alamos National Laboratory (P-24)	Co-authored 2016 MIF community review paper. Shifted research to stellarators (W7-X) and conceptual fusion propulsion. Leads P-24's INFUSE support to private industry.	Dispersed to other unclassified, high-profile LANL fusion and plasma physics programs.
John H. Degnan	Air Force Research Laboratory (AFRL/RD)	Co-authored 2016 MIF review paper and other FRCHX summary publications. Current status listed as semi-retired consultant.	Concluded FRCHX data analysis and transitioned to retirement/consulting.
Edward L. Ruden	Air Force Research Laboratory (AFRL/RD)	Co-authored FRCHX summary publications through 2016.	Concluded FRCHX data analysis and was likely reassigned to other HEDP/pulsed power projects within the AFRL Directed

Personnel Name	Primary Affiliation (Pre-2014)	Key Post-2014 Activities/Projects	Assessment of Trajectory
			Energy Directorate.

A cohesive, expert team is one of the most valuable assets of a complex science and technology program. The Wurden-Degnan-Ruden team represented the core of the U.S. government's expertise in FRC-based MTF. If the FRCHX mission were to continue under a new classified name at AFRL or LANL, the most logical and efficient course of action would have been to keep this team intact and reassign them collectively. The evidence shows the opposite occurred: the team's key members were dispersed. This dispersal is a strong negative indicator for the hypothesis that the program continued internally and strongly supports the hypothesis that the *mission itself* was transferred to an external organization that would build its own team, seeded with select personnel from foundational programs, such as Gabriel Ivan Font from LANL.

2.2. Hardware Disposition

- **FRCHX Experimental Hardware (FRC Source, Diagnostics):** There is clear institutional precedent at LANL for retaining and repurposing high-value, specialized plasma physics hardware. The Magnetized Shock Experiment (MSX) was explicitly constructed using "much of the equipment from the discontinued Field-Reversed Experiment with Liner (FRX-L) program". The FRC formation and diagnostic components of FRCHX, which were based on the FRX-L design, were likely returned to the LANL and AFRL inventories for potential use in future HEDP experiments. Federal regulations permit equipment acquired under a federal award to be re-tasked for other federally supported activities.
- **Shiva Star Pulsed-Power Facility:** The Shiva Star facility at AFRL Kirtland, which provided the liner implosion capability for FRCHX, remained operational after 2014. It was documented as hosting public tours in April 2014, and a 2016 conference paper described it as possessing "significant shot life remaining". It is important to distinguish this facility from the "Shiva Laser" at Lawrence Livermore National Laboratory, which was decommissioned in 1981. The retention of Shiva Star, a national-class, multi-megajoule pulsed power facility, indicates that AFRL's strategic interest was not limited to the FRC-based MTF concept alone but extended to the broader field of high-energy-density physics that such a facility enables. The end of FRCHX was the end of one experiment, not the end of AFRL's mission in this domain.

3. Final Assessment

This assessment synthesizes all lines of inquiry to provide a definitive, confidence-scored judgment on the most likely disposition of the FRCHX program.

- **Hypothesis 1: Complete Termination.** This hypothesis is assessed as unlikely. The program was on the cusp of achieving its primary goals, having just reported a major technical breakthrough in FRC lifetime. Terminating a successful program at its peak is programmatically illogical unless its mission is being superseded or transferred. The retention of the primary hardware asset (Shiva Star) further argues against complete termination of the underlying capability.
- **Hypothesis 2: Continuation Under a Different, Non-Public Program Name at AFRL or LANL.** This hypothesis is possible but lacks direct supporting evidence. The definitive

dispersal of the core expert team is the strongest counter-indicator. A simple re-badging of the program would almost certainly have retained the key personnel to ensure continuity of expertise. Furthermore, the observed programmatic pivot at LANL P-24 away from integrated experiments argues against internal continuation.

- **Hypothesis 3: Successful Transition to a Classified "Black" Program at Skunk Works®.** This hypothesis aligns with and explains all available evidence.
 1. **Motive and Opportunity:** The FRCHX program successfully "de-risked" the core plasma physics of high-density FRCs to a technology readiness level sufficient for transition from government-led basic research to industry-led applied development.
 2. **Temporal Correlation:** The cessation of public FRCHX activity (2013-2014) is immediately followed by the public announcement of the Skunk Works® Compact Fusion Reactor (CFR) in October 2014.
 3. **Technological Correlation:** The Skunk Works® CFR is based on a high-beta, magnetically confined FRC-like concept, the direct area of expertise of the LANL-AFRL collaboration.
 4. **Personnel Correlation:** There is a confirmed "human pipeline" of key FRC expertise from LANL's foundational programs directly into the Skunk Works® CFR program, specifically Gabriel Ivan Font, who is a co-inventor on the core CFR patents.

This convergence of evidence strongly suggests that the FRCHX program served as the final government-funded proof-of-concept, successfully maturing the technology to a point where its mission could be transferred to a clandestine program within a trusted prime defense contractor for development into a system for national security applications.

Confidence-Scored Judgments:

- **Complete Termination: LOW CONFIDENCE.** Contradicted by the program's technical success at the time of its disappearance from public records.
- **Continuation at AFRL/LANL: LOW CONFIDENCE.** Contradicted by the dispersal of the core research team and the absence of any successor programs in institutional R&D plans.
- **Transition to Skunk Works®: HIGH CONFIDENCE.** Supported by the strong convergence of temporal, technological, and personnel evidence, representing a logical and common pathway for maturing high-risk, dual-use technologies within the U.S. defense ecosystem.

Works cited

1. Downloads - USA Spending, https://files.usaspending.gov/docs/Data_Dictionary_Crosswalk.xlsx
2. USA Spending: Government Spending Open Data, <https://www.usaspending.gov/>
3. Appendix 5: Final Technical Report to OSTI User Guide November 2022, <https://www.energy.gov/sites/default/files/2022-12/appendix-5-final-technical-report-to-osti-user-guide-nov-2022.pdf>
4. OSTI.GOV | U.S. Department of Energy Office of Scientific and Technical Information, <https://www.osti.gov/>
5. Submitting Final Scientific/Technical Reports - OSTI, <https://www.osti.gov/stip/submit/financial-awardee-submissions/submitting-technical-reports>
6. Appendix 5: Final Technical Report to OSTI User Guide, <https://www.energy.gov/sites/prod/files/2020/06/f76/appendix-5-OSTI-user-guide.pdf>
7. Los Alamos National Laboratory Laboratory Directed Research and Development Program - FY24 Annual Progress Report, https://cdn.lanl.gov/files/fy24-ldrd-annual-report-overview_eec6d.pdf
- 8.

Annual Reports | Los Alamos National Laboratory, <https://www.lanl.gov/engage/organizations/nnsa-directed-r-and-d/annual-reports> 9. Untitled - Department of Energy, <https://www.energy.gov/sites/prod/files/2015/01/f19/2014LDRDReportToCongress.pdf> 10. Laboratory Directed Research and Development, https://cdn.lanl.gov/files/fy15-lanl-annual-report_66bfa.pdf 11. Directed Energy Directorate - Kirtland AFB, <https://www.kirtland.af.mil/Portals/52/documents/RDOOverview.pdf?ver=2017-01-18-121610-573> 12. Directed Energy - Air Force Research Laboratory, <https://www.afrl.af.mil/RD/> 13. Department of Defense Directed Energy Weapons: Background and Issues for Congress, <https://www.congress.gov/crs-product/R46925> 14. Directed Energy Directorate Overview - Kirtland AFB, <https://www.kirtland.af.mil/About-Us/Fact-Sheets/Display/Article/825975/directed-energy-director-ate-overview/> 15. AFRL's directed energy receives AF Organizational Excellence award > Air Force > Article Display - AF.mil, <https://www.af.mil/News/Article-Display/Article/494782/afrls-directed-energy-receives-af-organizational-excellence-award/> 16. NOT FOR PUBLICATION UNTIL RELEASED BY HOUSE ARMED SERVICES COMMITTEE SUBCOMMITTEE ON EMERGING THREATS AND CAPABILITIES U.S. HOUS - Defense Innovation Marketplace, <https://defenseinnovationmarketplace.dtic.mil/wp-content/uploads/hhrg/HHRG-114-AS26-Wstate-McMurryUSAFR-20160928.pdf> 17. Lockheed Martin Pursuing Compact Nuclear Fusion Reactor Concept - Oct 15, 2014, <https://news.lockheedmartin.com/2014-10-15-Lockheed-Martin-Pursuing-Compact-Nuclear-Fusion-Reactor-Concept> 18. G. A. Wurden - Google Scholar, <https://scholar.google.com/citations?user=DrfOzEAAAAJ&hl=en> 19. Magneto-Inertial Fusion - CORE, <https://core.ac.uk/download/pdf/81153670.pdf> 20. Glen Wurden: Fusion rockets for planetary defense - Nuclear and Particle Physics P-3, https://p25ext.lanl.gov/seminar_files/wurden_abstract.html 21. arXiv:1906.07457v3 [physics.plasm-ph] 10 Sep 2019, <https://arxiv.org/pdf/1906.07457.pdf> 22. John J. Degnan PhD, Physics University of Maryland College Park Independent Contractor at Semi-Retired Technical Consultant - ResearchGate, <https://www.researchgate.net/profile/John-Degnan> 23. Chris Grabowski Senior Researcher at United States Air Force Research Laboratory, <https://www.researchgate.net/profile/Chris-Grabowski> 24. Edward Ruden Doctor of Philosophy United States Air Force Research Laboratory - ResearchGate, <https://www.researchgate.net/profile/Edward-Ruden> 25. FRC Compression Heating Experiment (FRCHX) at AFRL - DTIC, <https://apps.dtic.mil/sti/tr/pdf/ADA610349.pdf> 26. 2 CFR 200.313 -- Equipment. - eCFR, <https://www.ecfr.gov/current/title-2 subtitle-A/ chapter-II/ part-200/ subpart-D/ subject-group-ECFR8 feb98c2e3e5ad2/ section-200.313> 27. Tour of Shiva Star sends powerful message - Kirtland AFB, <https://www.kirtland.af.mil/News/Article-Display/Article/817735/tour-of-shiva-star-sends-powerful-message/> 28. Shiva Star: Pioneering megagauss science and technology ..., https://www.researchgate.net/publication/306115779_Shiva_Star_Pioneering_megagauss_scien-ce_and_technology 29. Shiva Laser System | Lawrence Livermore National Laboratory, <https://www.llnl.gov/archives/1970s/shiva-laser-system> 30. Shiva laser - Wikipedia, https://en.wikipedia.org/wiki/Shiva_laser 31. Shiva Star - Kirtland AFB, <https://www.kirtland.af.mil/News/Photos/igphoto/2000489125/> 32. Lockheed Martin compact fusion reactor (CFR),

https://lynceans.org/wp-content/uploads/2021/02/Lockheed-Martin-CFR_US-converted.pdf